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This project researches and attempts to mathematically model the spread of popular topics on
the popular social networking site Twitter. This modelling is based on the Susceptible Infected
Recovered (SIR) epidemiological model, drawing parallels between the spread of infections and the
spread of topics on Twitter. The SIR model has been modified to reflect certain mechanisms of
Twitter. It has been discovered that introducing reinfection, to reflect users spontaneously rejoining
the trend, accurately models the long tail often found in graphs of the evolution of phrase popularity.
The effect of the scale-free nature of the Twitter network on the spread of a topic has been considered.
This reveals that phrases do not need to be innately infectious in order to trend and the total size
of an epidemic will be smaller on a scale-free network than for an equivalent homogeneous network.

I. INTRODUCTION

Twitter is a microblogging website that lets users share
their thoughts in posts of 140 characters or less, and read
the posts, or ‘tweets’ as they are called, of users they wish
to follow. Recently its significance has grown consider-
ably due to the impact it is having on information dis-
semination in multiple spheres of society. It is becoming
increasingly difficult for authorities to control the flow of
information as this process is democratised by Twitter
and similar digital social networks. The power of this
was clearly demonstrated by the planning of protests in
Iran [1] and riot clean-up operations in London [2] both
orchestrated almost entirely via Twitter. The debacle of
super injunctions in the UK and their impotence in the
face of this now mighty networking tool also shows the
powerful effect Twitter is having on our society [3].

This project researches one particular aspect of Twit-
ter, trends. When a significant number of tweets within
a short period of time contain a particular phrase the
phrase is said to trend on Twitter. These phrases are
often in the form of a hashtag (there is a glossary of
relevant terms in Appendix A) which is a form of so-
cial annotation for a topic, event or meme. There is a
constant list of currently trending topics on the Twitter
homepage. This list gives an insight into what people are
currently tweeting about and as such contains a wealth
of information on what is immediate and popular.

As the influence of social networks grows, it is be-
coming increasingly important to understand how infor-
mation disseminates within these networks. I have at-
tempted to model these trends and thus discover more in
depth information about them.

This paper will be structured as follows. First the
data that has been obtained on Twitter trends will be
discussed. Then basic disease models, in particular the
SIR model, will be explained and how they may be used
to model this data. Several modifications to the SIR
model will be introduced that reflect certain mechanisms
of trend propagation on Twitter. These will be examined
and several of them compared with trend data that has
been obtained. The network structure of Twitter and
the implications of introducing network considerations

into a model will then be discussed. Finally the ways
this project can be developed further will be explored.

II. DATA

To check the validity of the models in this project, data
on trends was collected. It was intended that a large
data sample of tweets would be collected to examine.
However it was found that it is necessary to be white-
listed by Twitter to gain full access to the Twitter API
and to have a dedicated system for collecting data. These
were both beyond the scope of this project. The limited
access that was obtainable was insufficient to gather more
than small samples. These, although representative, are
not large enough to perform truly meaningful statistical
analysis.

For this project we are only concerned with how the
number of tweets containing a trending phrase changes
in time. Information such as who tweeted a post or what
they actually said is not needed. Thus it was unneces-
sary to collect complete data on every single tweet con-
taining a trending phrase. A website called Trendistic [4]
was used to gather data. This website can search for a
phrase or hashtag and produce a graph showing the per-
centage of total tweets that contained that phrase over
time. Since it was not possible to collect a large sample of
tweets, Twitter’s own trending algorithm, which decides
what topics ‘trend’, was relied upon to discover trends.
Trendistic was used to observe a large number of trends
and collect data on 35 in particular, 10 of which feature
in this report. Details of these featured trends can be
found in Appendix B.

Trendistic cannot guarantee that it finds every sin-
gle tweet containing a search term. If the percentage
of tweets containing the trending phrase was significant
the results are accurate enough for the purposes of this
project. Thus only trends which constituted at least 0.1%
of all tweets on Twitter in any one hour have been con-
sidered.

The evolution of the popularity of phrases within
tweets has been discretised into three classes in a very re-
cent paper by Goncalves et al. [5]. This paper, which had
many similar aims to this project, concluded that the dy-
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namic behaviour of hashtags follows three behaviour pro-
files: continuous activity, periodic activity and isolated
peak activity. The first class consists of phrases that are
continuously found in tweets, such as standard English
expressions and common sentiments. (It is interesting
to note that the popstar ‘Justin Bieber’ is consistently
found in around 0.1% of all tweets and Twitter specif-
ically tweaked their algorithm so he did not trend con-
stantly!) Periodic activity follows regular cycles such as
‘church’ peaking every Sunday and #followfriday, which
is a Twitter tradition of recommending users to follow ev-
ery Friday. The last class of phrase popularity is charac-
terised by activity concentrated around a single isolated
peak. These are phrases which grow in popularity for a
brief period before losing their novelty and disappearing.
These are the phrases that Twitter calls trending topics
of which this project is concerned.

The number of users on Twitter at any one time mas-
sively varies based on circadian cycles and thus so does
the number of tweets. This means that knowing the ex-
act number of tweets posted in an hour that contain a
particular hashtag or phrase may not be representative
of its popularity depending on what time of day the par-
ticular activity occured. Therefore we will consider the
percentage of total tweets within an hour that contain
a trending phrase. This removes the effect of daily cy-
cles and allows the success of different trends to be fairly
compared regardless of when they trended. For simplic-
ity it has been assumed in this project’s models that the
total number of tweets in any hour remains constant.

A time scale of hours has been used as Trendistic only
produces values for hourly intervals which in turn is due
to limitations of the Twitter API. This granularity is not
as precise as would have been desired since many topics
only actually trend for the order of 20-40 minutes [6] but
is sufficient to give the general behaviour of a trend.

III. THE SIR MODEL

When something quickly becomes popular on the in-
ternet it is often said to have gone ‘viral’. It is intu-
itive to think of ideas or memes spreading like a disease.
Instead of passing on infections, people on the internet
pass on comments, videos, links, quotes etc. Parallels
have been drawn previously between epidemic dynamics
and spreading phenomena on social networks [7]. Infec-
tion models have also been thoroughly studied; thus it is
natural to base an attempt to model Twitter trends on
disease models.

One of the most fundamental disease models is Ker-
mack and McKendrick’s Susceptible Infected Recovered
or SIR model [8]. The simple epidemic case, where the
total population is assumed to be constant, will be used.
This is used to model diseases that spread much more
rapidly than population changes and so birth and death
rates are considered to be zero. The SIR model divides
an entire population into three classes: Susceptible, In-

fected and Recovered.
Initially the population is considered entirely suscep-

tible. A very small number of infected individuals are
introduced into this completely susceptible population.
These infected individuals interact with susceptible indi-
viduals and upon each interaction have a fixed chance of
infecting them. When individuals become infected they
spontaneously recover at a set rate. Once they have re-
covered they gain immunity from the infection and re-
main recovered indefinitely.

The model is defined by the following deterministic
mean field differential equations:

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI (3)

where S, I and R are the proportions of the total popu-
lation of the Susceptible, Infected and Recovered classes
respectively. Note that S + I + R = 1 as they are pro-
portions. The transmission rate between infected and
susceptible individuals is denoted by β and γ is the rate
at which an infected individual recovers.

Eq. (1) states that the size of the susceptible class
changes at a rate proportional to the product of the pro-
portions of the susceptible and infected classes. This as-
sumes random homogeneous mixing which is equivalent
to the Law of Mass Action. This states that the rate of
contact between two groups is proportional to the size of
each group concerned [9]. In other words every individual
has an equal random chance of interacting with any other
individual within the population. Thus the chance of a
susceptible individual interacting with an infected indi-
vidual is directly proportional to their total sizes in the
population. Eq. (1) models susceptible individuals be-
coming ‘infected’ by interacting with a random infected
individual and contracting the infection. The transmis-
sion rate between a pair of infected and susceptible indi-
viduals is β. Thus these individuals leave the susceptible
class.

Eq. (2) states that the individuals leaving the suscep-
tible class immediately join the infected class. Infected
individuals spontaneously recover at rate γ and leave the
infected class.

Eq. (3) states that the individuals leaving the infected
class immediately join the recovered class where they re-
main indefinitely.

An important quantity in this model is the basic re-
productive ratio

R0 =
β

γ

This is the average number of secondary cases produced
by an average infectious individual in a totally suscepti-
ble population. This value dictates the final size of the
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epidemic and also the peak size of the infected class in
an epidemic. It is clear to see that if R0 > 1 the infection
will spread and become an epidemic and if R0 ≤ 1 the
infection will decrease and die out. This is also called the
epidemic threshold.

The SIR system is a fixed point when the size of the
infection class is zero as then clearly all three differential
equations are zero. The entirely susceptible stationary
point

S = 1, I = 0, R = 0

is unstable for R0 > 1 (since this causes an epidemic) and
stable for R0 ≤ 1. There clearly cannot be a stationary
point with non-negative infection. When the system is
in the state

S = 1−R, I = 0, R > 0

it is also in equilibrium for any 0 < R < 1.
Since the susceptible class can only decrease, eventu-

ally the amount of new infection must also decrease as
there are less individuals to infect in the population. This
means we can establish the finite final size of an epidemic
which is the total number of individuals who ever became
infected. Since every infected individual must eventually
recover this is the size of the recovered class as time tends
to infinity. So at infinity the system must be at a sta-
tionary point.

If we divide Eq. (1) by Eq. (3) and rearrange we get

dS

dt
= −R0S

dR

dt

which implies

S(t) = S(0)e−R0(R(t)−R(0))

where S(0) and R(0) are the initial proportions of the
susceptible and recovered classes and R0 is the basic re-
productive ratio. Now since

S(t) + I(t) +R(t) = 1 and R(0) = 0

we get

S(0)e−R0R(t) + I(t) +R(t) = 1

The maximum proportion of the population the epi-
demic can ever infect is the total population, although it
is more likely to be smaller. So eventually we must reach
an equilibrium where I = 0 and there can be no more
infection. So if we rearrange and send t→∞ we get

R∞ = 1− S(0)e−R0R∞

This value can be calculated and we can see that R∞
approaches 1 as R0 becomes significantly larger than one.

S = 1−R∞, I = 0, R = R∞

is an important stable stationary point of this system.

The SIR system models infections where lifelong im-
munity is gained after infection. It assumes transmis-
sion is frequency dependent, which has been experimen-
tally shown to accurately model human diseases such as
measles [10]. The SIR model has also been extensively
studied and extended so there is a wealth of knowledge
to call upon. Is this model suitable for modelling Twitter
trends however?

For endogenous trends which are originated by a few
individuals on Twitter and do not have exogenous forc-
ing, this model makes intuitive sense. It would be very
difficult to model powerful exogenous forcing by, for ex-
ample, mass media and news stories as the effect of these
can massively vary. There is also no clear practical way
to measure such forcing so this will not be considered
here.

The biggest assumption of the above SIR model is that
an interaction between any two particular individuals is
equally likely as any other, which ignores network struc-
ture. This will be discussed later. Since disease transmis-
sion normally occurs due to social contact it is reasonable
to initially assume that frequency dependent transmis-
sion is representative of virtual social contacts as well.

All the online twitter users can be thought of as our
population who are initially susceptible. A user or several
users start a trend or ‘infection’ by tweeting a phrase
or hashtag. Fellow users who are following their posts
see one of these tweets and have a chance of becoming
infected by passing on the phrase. This can be done
by passing on the tweet directly to their own followers,
which is called retweeting, or write a tweet themselves
containing the phrase. Retweets make up approximately
31% of the tweets of trending topics [6] however we will
not differentiate between these and original tweets. Thus
by tweeting the phrase they spread the ‘infection’ to other
users who then themselves spread it by tweeting it.

If the ‘infection’ becomes a large enough epidemic it
becomes a trending topic. We consider users who tweet
or retweet a trend phrase as our infected class. They
remain infected while they continue to tweet using the
phrase until they become ‘recovered’ i.e. when they stop
tweeting about it. It will be assumed that each online
user tweets an equal amount an hour; so the number of
tweets in an hour is directly proportional to the num-
ber of users. Thus the size of the infected class, I(t), at
hourly time intervals, t, is equivalent to the number of
tweets containing the concerned phrase within the previ-
ous hour.

The worldwide, and sometimes national, trending top-
ics published by Twitter were regularly recorded. The
evolution of their popularity was then observed using
Trendistic to see if the epidemic behaviour predicted by
the SIR model is exhibited on Twitter. Fig. 1 shows four
trends observed that exhibited the single peak behaviour
very similar to that seen in SIR models. This shows SIR
model behaviour is exhibited on Twitter.

Next a SIR model was fitted to an actual trend. Mat-
lab’s ODE solver was used to solve the SIR equations.
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FIG. 1: Scaled popularity activity for four Twitter trends that exhibit single peak behaviour.
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FIG. 2: Data collected for trend #sotellmewhy displayed in green alongside an approximate SIR model in blue.

These equations were applied to a population of 100,000
to achieve necessary accuracy. On 2nd January 2012 the
hashtag ‘#sotellmewhy’ trended on Twitter. Data on
this trend was collected using Trendicity. Matlab was
then used to find the values for β, γ and initial infected,
I0, that produce the closest approximation to the data.
This was done by writing a function, I(β, γ, I0, t), that,
given β, γ and I0, uses the ODE solver to give the size
of the infected class at time t. Next Matlab’s fminsearch
function was used to find values of β, γ and I0 that min-
imise (∑

t

(I(β, γ, I0, t)−D(t))2

) 1
2

where D(t) is the data at time t.
The original data and model approximation are dis-

played in Fig. 2. The initial conditions of 100,000
population, 0.1591 initial infected, β = 31.9229 and

γ = 29.2331 were used to produce the approximation
in the figure shown in blue.

Visually it is clear that the simple endemic SIR model
can be used to model this particular trend. This was not
the only trend that was observed to display this simple
behaviour, see Fig. 1, however such trends were a mi-
nority. It was observed that most trends exhibit more
complicated behaviour. More data is required to discern
precisely how prevalent this simple endemic behaviour is.

IV. SIR WITH SYSTEMIC FORCING: THE
EFFECT OF THE TWITTER TRENDING

TOPICS LIST

One important consideration for modelling endogenous
trends is the list of trending topics that appears on the
Twitter homepage. Users learn of endogenous trends not
only from the users they are following but may also dis-
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FIG. 3: SIR with Forcing model for β = 31.9229, γ = 29.2331, I0 = 0.1591, θ = 0.2 and a range of values for τ .

cover them from this list and thus become ‘infected’.
Twitter’s algorithm for deciding whether something is

considered a trend is secret, presumably to avoid being
abused. It is known that it depends on both the number
of users that tweet a phrase, the number of tweets and
the duration of time for which it is tweeted about. Trends
must also compete with other trends to be listed on the
trending topics table.

The selection algorithm has been approximated by
assuming it only requires a fixed proportion of tweets
within an hour to contain a phrase for it to be listed as a
trend. It has also been assumed that the phrase remains
on the list for as long it is above this value.

To model this, the SIR equations were modified:

dS

dt
= −βSI − τSχ(I, θ) (4)

dI

dt
= βSI + τSχ(I, θ)− γI (5)

dR

dt
= γI (6)

where θ is the threshold proportion required for a trend
to appear on the list of trending topics. χ(I, θ) in Eq. (4)
and Eq. (5) is an approximate indicator function defined
by:

χ(I, θ) =

(
tanh(α(I − θ))

2
+

1

2

)
For I ≤ θ, χ(I, θ) = 0, and I >> θ, χ(I, θ) = 1. We
introduce α as a coefficient large enough such that the
function is steep around θ. So χ(I, θ) = 1 for values of
I just above θ. The value α = 100, 000 was used for
calculations.

This function has been used instead of a discontinu-
ous indicator function as its continuity prevents problems
with Matlab’s ODE solver. It means for sufficiently large

infection there is an additional force of infection, defined
by τ , proportional to the size of the susceptible class.

When the tweets containing a hashtag or phrase con-
stitute more than θ of all tweets within an hour, this
indicates that Twitter considers it a trend and lists it as
a trending topic. While it is a trending topic, susceptible
individuals spontaneously become infected by seeing it.
This happens at a rate proportional to the size of the
susceptible class.

This system, like the simple SIR model, is in equilib-
rium when there is zero infection. Just like before, there
is a stationary point when the entire population is sus-
ceptible . This system will give a different larger value
for R∞ which must be measured numerically.

Fig. 3 shows the effect of different levels of forcing.
The value θ = 0.2% has been used as an approximation
taken from unverified data found online [11]. For τ = 0
the model is identical to the non-forcing SIR model from
before. The blue line in Fig. 3 is identical to the blue
line in Fig. 2 when there is no forcing in the model.
The behaviour of the infection is identical to the non-
forcing model until the infection reaches θ and it will be
completely identical if the infection never reaches θ.

As can be observed from the graph, upon reaching θ in-
fection increases noticeably and, as is expected, achieves
increasing levels of infection for higher values of τ . The
peak of infection also occurs earlier and the epidemic
starts diminishing sooner. For low values of τ the size
of infection can actually be less than for the non-forcing
model towards the end of the epidemic. This can be seen
in Fig. 3 for τ = 0.005 and τ = 0.01 .

After the peak, the infection decreases until it again
passes the θ threshold, upon which it decreases rapidly.
This behaviour creates a ‘long tail’. Varying θ only
changes the threshold that an epidemic must reach before
having the behaviour described above. A reliable value
for θ was not found so this model has not been used to
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fit data.
This behaviour would be expected to be exhibited by

all the trends in the collected data since all these trends
were de facto listed as a trending topic. However since
data has not been collected for phrases that did not trend
we have no comparison with which to establish values for
τ . We would expect however for it to be related to β.
The ‘infectiousness’ of a trending topic has been shown
to depend more on the inherent appeal of the topic rather
than other factors such as the attributes of ‘infected’ in-
dividuals [6]. Thus how likely a user is to start tweeting
a phrase is more dependant on the content than where
they discovered it. The ‘infectiousness’ of a phrase how-
ever is a vague concept, one that would be very difficult
to quantify.

V. SIR MODEL WITH TIME DEPENDENT
REINFECTION: SPONTANEOUSLY TWEETING

ON A TREND AGAIN LATER

It has been assumed thus far that once a user stops
tweeting on a trend, they do not restart tweeting about
it at some later point. Also it has been assumed that
all users ‘recover’ at the same rate. It is quite likely
that some users will continue to tweet on a trend for
an extended length of time, especially if they enter a
discussion on the topic with several other users; others
will only tweet once or twice. This could be modelled by
introducing different subclasses of the infected class that
have different recovery rates. However this introduces
many new variables that cannot easily be estimated or
measured. This concept will be modelled by having some
recovered individuals spontaneously become reinfected.
This can be done by amending the SIR equations:

dS

dt
= −βSI (7)

dI

dt
= βSI − γI + ζRχ

′
(t, T ) (8)

dR

dt
= γI − ζRχ

′
(t, T ) (9)

Here the time dependent term, χ
′
(t, T ), has been in-

troduced in Eq. (8) and Eq. (9) defined by

χ
′
(t, T ) =

(
1

2
− tanh(α(t− T ))

2

)
This is another continuous approximate indicator func-
tion. So while time t is less than some value T a propor-
tion of the recovered class, set by the ζ term, will become
infected again. This models users who tweet briefly on
a trend and then spontaneously decide to tweet again
about it later. The period of time for which ‘recovered’
users may become reinfected has been averaged as T .

For finite T the system will eventually become the sim-
ple epidemic SIR system and thus it has the same sta-
tionary points, when infection is zero.

When very large values of T are considered, the system
tends to an equilibrium. While t < T there are always
some recovered individuals becoming reinfected so there
will always be infected individuals in the population. So,
since the number of susceptibles can only decrease, even-
tually all of the susceptible class must become infected
for a large enough T . If this point is reached the system
will tend to an equilibrium where the sizes of the infected
and recovered classes is constant. By solving Eq. (8) and
Eq. (9) for

S = 0 and χ
′
(t, T ) = 1

we find this equilibrium state is

S = 0, I =
ζ

γ + ζ
, R =

γ

γ + ζ

This equilibrium will only remain while t < T however.
Initially the recovered class is very small so the epi-

demic behaves very similarly to the simple epidemic.
However as time continues, the recovered class grows and
the reinfection of recovered individuals has an increasing
forcing effect on the infected class. Thus we would ex-
pect to see an infection peak, as in the simple epidemic
case, and then for the infection to tend towards the above
equilibrium while t < T . How fast the system tends to-
wards equilibrium depends how fast all of the remaining
susceptibles become infected. After time T the epidemic
behaves once again like the simple epidemic as there is
no reinfection, so the epidemic dies out and the sizes of
the susceptible and recovered classes become constant. If
T is large enough these will be zero and the total popula-
tion respectively. Hence the size of T can have significant
impact on the value of final epidemic size.

As can be seen in Fig. 4 this behaviour is exhib-
ited by trends on Twitter. This model was fitted to
a trend. On 4th January 2012 the hashtag ‘#ISecret-
lyLove’ trended. Data was collected on it using Trendis-
tic and values found to produce Fig. 5. A very similar
Matlab technique as with the simple SIR model was used
to establish the best values for β, γ, ζ, T and I0. Due to
the coarse granularity of the data multiple sets of values
were found using fminsearch that equally minimised(∑

t

(I(β, γ, I0, ζ, T, t)−D(t))2

) 1
2

The values given here were chosen as they produced the
median approximation.

A population of 100,000 was used, as with all numer-
ical analysis of the models in this project. The follow-
ing values were calculated: β = 24.5329, γ = 22.4415,
ζ = 0.0051, T = 13.3882 and I0 = 1.0209. These pro-
duced the approximation in Fig. 5 shown in blue.

Adding this ζ term can model trends which exhibit this
long tail as shown in Fig. 4. These trends were preva-
lent in the observations of this project, however these
tails are not always smooth and often fluctuate. It is not
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FIG. 4: Scaled popularity activity for three Twitter trends that exhibit single peak behaviour with a long tail.
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FIG. 5: Data for trend #ISecretlyLove displayed in green alongside an approximate SIR model with time dependent
reinfection in blue.

easy to discern whether this is due to stochastic effects
or other forces at work. I expect it is most likely it is a
combination of both.

VI. SEIR MODEL: DELAY IN TWEETING

It has been assumed thus far that when a user sees
someone they are following post on a trend and becomes
‘infected’, they immediately start tweeting on the trend.
In reality many users are not constantly checking their
Twitter feed. When they do they may see a post from
a few hours before and belatedly join in with the trend.
This adds an element of delay to some tweets. Thus we
will continue using ideas from epidemiology and intro-

duce an ‘Exposed’ class denoted E. This addition to the
SIR model (which is not the same as the standard SEIR
model) gives the following equations:

dS

dt
= −βSI (10)

dE

dt
= εβSI − δE (11)

dI

dt
= (1− ε)βSI + δE − γI (12)

dR

dt
= γI (13)

In Eq. 11 two new variables, ε and δ are introduced.
The proportion of susceptibles that do not immediately
tweet when a user they are following tweets on a trend,
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FIG. 6: SEIR model for β = 27.12, γ = 24.97, I0 = 1, δ = 10 and varying values of ε.
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FIG. 7: SEIR model for β = 27.12, γ = 24.97, I0 = 1, ε = 0.2 and varying values of δ.

but become ‘exposed’, is denoted by ε. They later be-
come ‘infected’ by tweeting the trending phrase. This
is modelled by the δE term. In Eq. 12 we have the
(1− ε) proportion of the susceptibles who, when exposed
to infection, immediately start tweeting, and a δE term
representing the exposed individuals who have become
belatedly infected. Once again individuals can only move
linearly through the classes. So if an individual becomes
‘exposed’ they must eventually become infected, then re-
covered and then remain recovered indefinitely.

Clearly if ε = 0 this model is the same as the simple
epidemic case. The exposed class behaves very similarly
to the infected class in the simple epidemic model but
with a transmission rate of εβ and recovery rate of δ.
Thus we would expect the exposed class to exhibit single
peak behaviour.

Fig. 6 shows the effect of varying ε for a fixed δ.
The ε = 0 case is the same as the basic SIR with

β = 27.12, γ = 24.97 and 1 initial infected. It can be
seen that as ε increases the graph stretches horizontally.
This is intuitive as we would expect R∞ to remain simi-
lar, but the infected activity to be more dispersed.

Fig. 7 shows the model for varying values of δ. We
can see it has the opposite effect to ε. As δ increases the
system becomes more like the SIR case as individuals are
exposed for increasingly shorter periods. Note that when
δ = 0 there is no epidemic. This is due to the system
becoming almost a basic SIR system with transmission
rate εβ. This gives

R0 =
εβ

γ
< 1

which means the disease dies out and there is no epi-
demic.

This system has again an infection free equilibrium.
The stationary points will be the same as for the simple
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SIR model, however the total number of individuals ever
infected, R∞, will depend on ε and δ so the post-epidemic
stationary point will have different values. There is no
endemic equilibrium since the susceptible class is not re-
plenished and there are no loops in the system.

Thus introducing this addition to the model alters the
life span of the epidemic and changes the reproductive
ratio, but does not affect the topology of the epidemic.
Since it was not possible to glean data about the delays
between a user tweeting a hashtag and their followers
tweeting it, values cannot be established for this model.
However, this delay is an important consideration in any
such model.

VII. SIR WITH BIRTHS AND DEATHS:
ATTRITION OF ONLINE USERS

So far, the population of Twitter users online has been
considered to be constant. What has not been factored
in is that even if the total number remains constant,
the identity of the users changes. This change of users
who are online is called attrition. The concepts of births
and deaths from disease models can be introduced to
the model but instead model users going online or go-
ing offline. We will assume that users who are ‘online’
are actually active on Twitter. The population can be
kept constant by having the same number of births as
deaths. In the case of our model this means the birth
rate is d(S + R), where d is the death rate or going of-
fline rate. This addition can be modelled by the following
equations:

dS

dt
= dR− βSI (14)

dI

dt
= βSI − γI (15)

dR

dt
= γI − dR (16)

Infected individuals do not go offline since they are cur-
rently tweeting on the trending topic so must be active.
This models the attrition of users online and changes the
dynamics of the system since the susceptible class now
gets replenished.

We still have the infection free equilibrium and

R0 =
β

γ

There is now also a new fixed point where the infection
is endemic. If we set dI

dt = 0 we get the susceptible sta-
tionary point:

S∗ =
γ

β

and from dS
dt = 0, using S∗ from above we get the infected

stationary point:

I∗ =
d(β − γ)

β(γ + d)

Looking at the Jacobian of this fixed point we get:

J =

(
−d(β+d)γ+d −(γ + d)
d(β−γ)
γ+d 0

)

which has the eigenvalues:

λ =
−d(β + d)±

√
d2(β + d)2 − 4d(β − γ)(γ + d)2

2(γ + d)

Assuming d is small compared to the other terms this
approximates to:

λ = −dR0

2
± 2i

√
d(β − γ)γ2

which shows that if R0 > 1 this endemic fixed point
is stable and is converged to with damped oscillations.
These oscillations are shown in Fig. 8.

Multiple peaks have been observed in the trends in
the collected data; however most do not display clearly
oscillatory behaviour. Fig. 9 shows a trend that does ap-
pear to display oscillatory behaviour but only temporar-
ily. The trends that have been considered do not display
continuous activity so infection cannot become endemic.
Therefore although attrition of users must be a factor
in propagation of topics, it must not be significant and
another mechanism must be causing these observed mul-
tiple peaks.

VIII. NETWORK STRUCTURE
CONSIDERATIONS

The models discussed assume random mixing, where
any individual has an equally likely chance of interacting
with any and every other individual in the entire popu-
lation. This assumption has been shown to be valid for
modelling certain diseases such as measles [10]. However
the network structure of Twitter is considerably different
from face-to-face social interaction networks.

So what kind of network structure does Twitter have?
Twitter is a directed network where we can consider the
users to be nodes. A directed connection between two
nodes represents a user following another user’s tweets.
Statistical analysis has shown the Twitter network dis-
plays a scale-free structure [12].

Scale-free networks are defined by the degree of nodes
(or number of followers a user has) following a power-law
distribution. In other words

P (k) ∼ k−σ

where P (k) is the proportion of nodes in the network of
degree k. Normally 2 < σ < 3, although it is occasionally
outside these bounds. A scale-free network can be gen-
erated from an initial network by adding nodes one at a
time that preferentially connect to nodes of high degree.
This can be achieved by using the Barabási-Albert or
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FIG. 8: SIR with attrition model for β = 27.12, γ = 24.97, I0 = 1 and varying values of d.
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FIG. 9: Data for trend #WeAllNeed. This trend appears to display temporary oscillatory behaviour.

‘preferential attachment’ algorithm [13] where each new
node is connected to m existing nodes with a probabil-
ity proportional to the degree of the existing nodes. This
generates a network with a power law distribution, σ = 3
and average connectivity of 2m.

Scale-free networks are characterised by the relatively
high prevalence of nodes of degree much greater than the
average and a small average distance between any two
nodes. This latter attribute is known as the small-world
phenomenon which often appears in human social net-
works. The archetypal example of this is the six degrees
of separation theorised to be between almost any two
people on Earth.

Consider the Twitter network, when users join they
are more likely to follow people with lots of followers and
unlikely to follow people with very few. Popularity breeds
popularity. This creates a network with the majority of
users having only a few followers and a small minority

of users having a very large number of followers. These
highly influential users, called ‘hubs’ in network theory
and ‘super-spreaders’ in epidemiology, should intuitively
have a disproportionate effect on the success of a trend
spreading, so they must be taken into consideration. As
of 20th March 2012, Lady Gaga has the highest number
of followers on Twitter with 21,041,668 [14], whereas the
average user has only 126 followers [15].

The spreading of diseases on scale-free networks has
been a focus of research due to its aptness for modelling
sexually transmitted infections on the complex network
of sexual partnerships. This is due to the extreme het-
erogeneity in the number of sexual partners people have.
The majority of people have only a few sexual partners
but there is a minority of people who are very sexually
active and have a very large number of partners. This
core group of high-risk individuals help maintain endemic
infections in a population where the majority are in long-
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term monogamous relationships [16].
The internet and the world wide web have been shown

to also exhibit scale-free characteristics [17]. The spread
of computer viruses on the internet has been studied with
interesting conclusions. Pastor-Satorras and Vespignani
[17] used a susceptible-infected-susceptible model (where
infected individuals recover to become susceptible again)
and have shown that in this model epidemics do not have
a threshold on an ideal (infinite population) scale-free
network. In other words computer viruses can theoret-
ically spread and become endemic even if they have an
arbitrarily low transmission rate.

Since there are many parallels between these networks
and Twitter’s, the effect introducing this network struc-
ture may have on the SIR model should be considered.

This can be done by denoting the densities of suscepti-
ble, infected and recovered individuals of degree k at time
t by Sk(t), Ik(t) and Rk(t) respectively. We normalise by
setting

Sk(t) + Ik(t) +Rk(t) = 1

It will be assumed that the network is uncorrelated.
This means the probability a given neighbour of a node
of degree i is of degree j depends only on the node-
connectivity distribution. This probability is given by:

jP (j)∑
k kP (k)

where the sum is over all the values of node degree found
in the network. The basic SIR system then becomes:

dSk
dt

= −Sk
∑
j

βijIj (17)

dIk
dt

= Sk
∑
j

βijIj − γIk (18)

dRk
dt

= γIk (19)

where βij = ijβ/〈k〉 is the infection rate a susceptible
node of degree i becomes infected by a node of degree
j. 〈k〉 is the average degree of the nodes in the network
calculated by:

〈k〉 =
∑
j

jP (j)

once again summing over all values of node degree found
in the network. It is possible to modify the models that
have been discussed to include the network structure and
thus create a more realistic but also more complicated
models. Adding network structure made these models
too complicated for analysis.

We define ρ0 = βD〈k〉 to be the average number of
secondary cases an infected individual would create in
an entirely susceptible homogeneous population, whereD
is some constant. By homogeneous we mean a network

where every node is connected to 〈k〉 neighbours. The
basic reproductive ratio now becomes:

R0 = ρ0
〈k2〉
〈k〉2

For an ideal scale free network, that is to say one with
infinite population, the variance of the connectivity dis-
tribution is infinite. This means

〈k2〉
〈k〉2

=∞

as well which implies, regardless of the size of the trans-
mission rate, R0 =∞. Hence the system has no epidemic
threshold. For real world networks this will not be the
case, however R0 will still be much larger and the thresh-
old will be lower than for the corresponding homogeneous
network.

For our Twitter analogy this means a phrase theoret-
ically has the potential to trend regardless of how ‘in-
fectious’ it is. Let us suppose a hugely influential user
becomes infected or starts an infection with a low trans-
mission rate. Even though each of their users individ-
ually has a very low probability of becoming infected,
because there are so many of them the phrase could still
potentially trend. However we must factor in that the
‘infectiousness’ of a phrase may itself be increased just
by being posted by a very popular user. This has been
observed occurring with alarmingly high success for a
member of the boy band One Direction, who regularly
asks his followers to get a random hashtag of his choos-
ing to trend.
R∞ can be calculated by integrating Eq. (17) and Eq.

(18) to get:

R∞ = 〈1− e−kα〉

where

α = ρ0
〈k(1− e−kα)〉

〈k〉2

Compared to the final epidemic size for a homogeneous
network R∞ is lower [18]. This is a significant conse-
quence for those wanting to know how many people will
participate in a trend on Twitter.

Shaofen et al. introduced infection delay to the com-
plex network SIR model [19]. This addition gives the
following:

dSk
dt

= −Sk(t)
∑
j

βijIj(t− τ) (20)

dIk
dt

= Sk(t)
∑
j

βijIj(t− τ)− γIk(t) (21)

dRk
dt

= γIk(t) (22)

where τ is some constant. They showed that when the
transmission rate, β, is above a threshold a large delay
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naturally produces multiple epidemic peaks [19]. This
may explain the multiple peaks that were observed in
the trends in the data.

Another potential network expansion to the model is
to add different transmission rates depending on the re-
lationship between a follower and a followee. Huberman
et al. have shown that there are two different networks
at play on Twitter [20]. There is the large dense declared
network of followers and the hidden sparser network of
genuine social relationships. In other words most users
follow many people but only actually directly interact on
Twitter with a few. On Twitter it is possible to aim a
post at a specific user by writing ‘@their username’ in a
post. Around 25.4% of all posts are directed [20] so this
is an important part of the Twitter experience.

This could be modelled on the network by adding dif-
ferent weightings of transmission rate to connections de-
pending on the amount of direct interaction between two
users. This can be done either by having a direct rela-
tion between transmission rate and level of interaction or
more simply having two classes of connection, standard
follower and friend. Huberman et al. defined a friend as
someone a user has directed at least two posts to. This
weak definition was enough to show a relationship be-
tween the amount of friends and level of Twitter usage
for a user so this measurement is significant. This con-
nection weighting would have to be directly calculated
for a given network.

It is expected that a trend will be more likely to spread
between friends compared to standard followers. This
has significant consequences for those wanting to harness
Twitter in order to spread an idea virally.

IX. DISCUSSION & CONCLUSION

Equation systems that can model the spread of topics
on Twitter have been proposed taking into consideration
relevant mechanisms. Trends have been observed which
display popularity profiles that match those predicted by
some of these models. Large statistical analysis is now
needed to determine whether these equation systems are
representative and actually due to the underlying mech-
anisms that have been modelled. This analysis is imper-
ative in order to develop this research further.

The model can always be made to fit the data more
closely by adding more variables and functions. This
will be at the sacrifice of simplicity and make it more
difficult to find analytical results. I have endeavoured at
each stage to keep modifications simple and model only
one aspect of Twitter functionality at a time.

The next logical step to develop this project further
would be to make an agent based model. This would
require writing a computer model that would generate
Twitter-like networks of users who interacted following
some set rules. It would then be possible to observe how
a trend might propagate across this generated network
and produce a much more realistic model. However, it

would be hard to perform mathematical analysis on this
model due to its complexity, although numerical analysis
could prove to be fruitful.

There are some other aspects of modelling the Twit-
ter network that could be considered in order to develop
the model further. One of these would be to intro-
duce stochasticity to the model. The models proposed
in this project are deterministic mean field equations,
which should be accurate for large populations such as
the Twitter network. However if stochasticity has a pow-
erful effect on the spread of trends the discussed models
may not be accurate. Introducing stochasticity would re-
quire large amounts of statistics on the network but is an
important element that needs to be considered.

It appears there are a great many factors that deter-
mine the success and behaviour of a trend. I believe that
although these could potentially be quantified for a trend
post hoc it would be very difficult to predict how a given
phrase will perform, although some generalities may ex-
ist.

It has been discovered that there is a good deal of over-
lap between modelling the spread of diseases and mod-
elling the spread of phrases on digital social networks.
The techniques used extensively for disease models have
potential for application in research into information dis-
semination on digital social networks, an area of increas-
ing importance.

There are mechanisms exclusive to Twitter that have
a significant effect on the behaviour of trend propaga-
tion. The mechanisms that have been determined to be
most influential are the infection forcing from the Twit-
ter trends table and extended activity by a minority of
‘infected’ users. The latter can explain the long tail often
exhibited by Twitter trends. It has been discovered that
the heterogeneous network structure of Twitter will have
considerable effect on the spread of trends. A phrase
does not need to be particularly ‘infectious’ to trend and
the number of users who tweet on a trend will be lower
than expected compared to an equivalent homogeneous
network. It is also possible that adding delay to infection
may model the multiple peaks observed in trends. Fur-
ther research is required to establish whether this is the
case.

The modelling of Twitter trends can reveal a great deal
about the network behaviour of online social networks.
It can also explain some observed phenomena. It may
be possible to discern factors that do significantly effect
the success of a trend or predict the nature of its spread.
This will be of particular interest to groups who want
to spread ideas, disseminate information and of course
advertise virally on Twitter and similar networks.
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X. APPENDIX

A. Glossary

API: Application Programming Interface. Source of all
Twitter data and is used to build applications that
access Twitter. Used by programs to access Twit-
ter and has limitations for users that have not been
‘white-listed’ i.e. specifically given access by Twit-
ter.

Follow: To follow someone on Twitter is to subscribe to
their Tweets or updates on the site.

Follow count: The numbers that reflect how many peo-
ple you follow, and how many people follow you.

Follower: A follower is a Twitter user who has sub-
scribed to another user’s Tweets.

Hashtag: The # symbol is used to mark keywords or
topics in a Tweet e.g. #maths. It was created or-
ganically by Twitter users. Clicking on a hashtag
will perform a search function for all Tweets con-
taining the hashtag. Popular hashtags often be-
come trending topics.

Meme: An element of a culture or behaviour that is
passed from one individual to another by non-
genetic means, especially imitation. On the inter-
net it means an image, video or phrase etc. that
is passed electronically from one internet user to
another. Often these are internet in-jokes.

Retweet (noun): A Tweet by another user, forwarded
to you by someone you follow. Often used to spread
news or share valuable findings on Twitter.

Retweet (verb): To retweet, retweeting, retweeted.
The act of forwarding another user’s Tweet to all
of your followers.

Timeline: A real-time list of Tweets on Twitter.

Trending topic: A subject algorithmically determined
to be one of the most popular on Twitter at the
moment.

Tweet (verb): Tweet, tweeting, tweeted. The act of
posting a message, often called a ”Tweet”, on Twit-
ter.

Tweet (noun): A message posted via Twitter contain-
ing 140 characters or fewer.

Tweeter: An account holder on Twitter who posts and
reads Tweets. Also known as Twitterers.

Twitter: An information network made up of 140-
character messages from all over the world.
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B. Trend Data

Trend Date Trended Trendistic url

#sotellmewhy 02/01/12 http://trendistic.indextank.com/sotellmewhy/
_since-2012-01-02-10h-utc/_until-2012-01-03-10h-utc

#ISecretlyLove 04/01/12 http://trendistic.indextank.com/ISecretlyLove/
_since-2012-01-04-01h-utc/_until-2012-01-05-01h-utc

#inanafricanhouse 06/01/12 http://trendistic.indextank.com/inanafricanhouse/
_since-2012-01-05-16h-utc/_until-2012-01-07-05h-utc

#1ThingIFindSexy 09/01/12 http://trendistic.indextank.com/1ThingIFindSexy/
_since-2012-01-09-01h-utc/_until-2012-01-10-11h-utc

sloot 11/01/12 http://trendistic.indextank.com/Sloot/
_since-2012-01-11-03h-utc/_until-2012-01-15-02h-utc

#WeAllNeed 11/01/12 http://trendistic.indextank.com/WeAllNeed/
_since-2012-01-11-01h-utc/_until-2012-01-12-22h-utc

#youknowshestheone 25/02/12 http://trendistic.indextank.com/youknowshestheone/
_since-2012-02-25-01h-utc/_until-2012-02-26-01h-utc

#somewhereintheghetto 27/02/12 http://trendistic.indextank.com/somewhereintheghetto/
_since-2012-02-27-01h-utc/_until-2012-02-28-11h-utc

#Iwannagiveashoutoutto 27/02/12 http://trendistic.indextank.com/iwannagiveashoutoutto/
_since-2012-02-27-23h-utc/_until-2012-02-29-23h-utc

liam payne 15/03/12 http://trendistic.indextank.com/liam-payne/
_since-2012-03-15-00h-utc/_until-2012-03-15-13h-utc
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